On the computation of reducible invariant tori in a parallel computer
نویسندگان
چکیده
We present an algorithm for the computation of reducible quasi-periodic solutions of discrete dynamical systems. The method is based on a quadratically convergent scheme that approximates, at the same time, the Fourier series of the torus, its Floquet transformation and its Floquet matrix. The Floquet matrix describes the linearization of the dynamics around the torus and, hence, its linear stability. The algorithm presents a high degree of parallelism and the computational effort grows linearly with the number of Fourier modes needed to represent the solution. For these reasons it is a very good option to compute quasi-periodic solutions with several basic frequencies. The paper includes some examples to show the efficiency of the method in a parallel computer.
منابع مشابه
On the Computation of Reducible Invariant Tori on a Parallel Computer
We present an algorithm for the computation of reducible invariant tori of discrete dynamical systems that is suitable for tori of dimensions larger than 1. It is based on a quadratically convergent scheme that approximates, at the same time, the Fourier series of the torus, its Floquet transformation, and its Floquet matrix. The Floquet matrix describes the linearization of the dynamics around...
متن کاملOn the reducible $M$-ideals in Banach spaces
The object of the investigation is to study reducible $M$-ideals in Banach spaces. It is shown that if the number of $M$-ideals in a Banach space $X$ is $n(<infty)$, then the number of reducible $M$-ideals does not exceed of $frac{(n-2)(n-3)}{2}$. Moreover, given a compact metric space $X$, we obtain a general form of a reducible $M$-ideal in the space $C(X)$ of continuous functions on $X$. The...
متن کاملNew Algorithm For Computing Secondary Invariants of Invariant Rings of Monomial Groups
In this paper, a new algorithm for computing secondary invariants of invariant rings of monomial groups is presented. The main idea is to compute simultaneously a truncated SAGBI-G basis and the standard invariants of the ideal generated by the set of primary invariants. The advantage of the presented algorithm lies in the fact that it is well-suited to complexity analysis and very easy to i...
متن کاملFast Numerical Algorithms for the Computation of Invariant Tori in Hamiltonian Systems
In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functio...
متن کاملComputation on Zagreb Polynomial of Some Families of Dendrimers
In mathematical chemistry, a particular attention is given to degree-based graph invariant. The Zagrebpolynomial is one of the degree based polynomials considered in chemical graph theory. A dendrimer isan artificially manufactured or synthesized molecule built up from branched units called monomers. Inthis note, the first, second and third Zagreb poly...
متن کامل